
Quantification of Phenolic Compounds in Olive Oil Mill
Wastewater by Artificial Neural Network/Laccase Biosensor

JOSEÄ S. TORRECILLA,*,† MARIA L. MENA,§ PALOMA YAÄ ÑEZ-SEDEÑO,§ AND
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In this paper is considered a new computerized approach to the determination of concentrations of
phenolic compounds (caffeic acid and catechol). An integrated artificial neural network (ANN)/laccase
biosensor is designed. The data collected (current signals) from amperometric detection of the laccase
biosensor were transferred into an ANN trained computer for modeling and prediction of output. Such
an integrated ANN/laccase biosensor system is capable of the prediction of caffeic acid and catechol
concentrations of olive oil mill wastewater, based on the created models and patterns, without any
previous knowledge of this phenomenon. The predicted results using the ANN were compared with
the amperometric detection of phenolic compounds obtained at a laccase biosensor in olive oil
wastewater of the 2004-2005 harvest season. The difference between the real and the predicted
values was <0.5%.
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INTRODUCTION

The extraction of olive oil is achieved through discontinuous
(pressing) or continuous (centrifuging) processes in traditional
mills or in modern units, respectively. Centrifugation, despite
its high water consumption (around 0.6 m3 per ton of olives
processed), is still the most widely employed method for the
production of virgin olive oil, especially in countries that
produce large amounts of olives in a short time (1). Usually,
two byproducts are obtained with either process: a solid residue
and a brownish black colored effluent from the olive plus the
wash water, that is, the olive oil mill wastewater (OMW) (2).
This liquid effluent has a high polluting organic load, due to a
high content of organic substances, including sugars, tannins,
polyphenols, polyalcohols, pectins, and lipids (3). This becomes
a major environmental problem in the main olive-producing
countries of the Mediterranean region. It is known that phenols
are major contributors to the toxicity and the antibacterial
activity of OMW, which limits its microbial degradability (2).
Moreover, OMW may contain up to 10 g L-1 of phenols (3),
the maximum amount of phenols in wastewater allowed by the
European Union being<1 mg L-1 (Urban Water Directive 91/
271/EC).

Even though there is a plethora of analytical methods for the
determination of phenolic compounds, including spectrometry
(4), high-performance liquid chromatography (5, 6), gas chro-

matography (7), and gas chromatography-mass spectrometry
(8, 9), there is still a demand for relatively simple analytical
devices, suitable for screening, and rapid assays of this type of
compound in complex real samples, such as OMW. In this
context, electrochemical biosensors with laccase as biological
recognition element for the analysis of phenols have been
developed by the immobilization of laccase on different
electrode surfaces such as carbon fibers (10), glassy carbon (11,
12), graphite (13-16), carbon paste (17), polyethersulfone
membranes on a Universal Sensors base electrode (18), polya-
niline-modified interdigitated Pt sensors (19), PVP-gel deposited
on a Clark electrode (20), and gold surface (21). This kind of
determination commonly uses enzymatic reactions combined
with amperometric detection of the resulting product. For
phenolic compounds determination, laccase is used as the
enzymatic recognition part. This enzyme is well-known to
reduce oxygen directly to water without the intermediate
formation of hydrogen peroxide at the expense of oxidation of
a variety of substrates, for example, phenols. Amperometric
reduction of the generated products is then used as the
quantification method, by simply applying reduction potentials.
Necessary reduction potentials for this process are very near
0.0 V, which presents a great advantage as few substances
interfere at this potential. The phenolic compounds tested were
caffeic acid and catechol because they are two of the major
phenolic compounds present in OMW (gas chromatography-
mass spectrometry) and because they are two of the most
sensitive substrates of laccase (15). Because of the similarity
in the produced oxidized species, amperometric signal overlap-
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ping in the reduction voltammograms is high. This fact
transforms the quantification problem into a chemometric
studysa case for the application of an artificial neural network
(ANN).

ANN is a mathematical algorithm that has the capability of
relating input and output parameters without requiring a prior
knowledge of the relationships of the process parameters. Its
structure is relatively simple, with connections in parallel and
sequence between neurons. This means short computing time
and high potential of robustness and adaptive performance (22).
The ANN is able to model chemical processes based on linear
or nonlinear dynamics. Focusing on the chemical processes, the
modeling accuracy of the ANN is comparable with that of other
commercial simulators based on complex algorithms (22-24).
The use of ANNs in phenolic compounds quantification has
also been reported (25,26).

In this paper we present the application of ANN to the
estimation of caffeic acid and catechol concentrations on a
laccase biosensor based on the approximation of a relationship
between input and output. The proposed integrated ANN/laccase
biosensor will enable the determination of these phenolic
compounds’ concentrations infield and online by an ANN-
trained computer. This would be very interesting for further
applications to digital control, or measurement devices, which
do not require any kind of mechanistic premises but only input
and output variables.

EXPERIMENTAL PROCEDURES

Reagents and Solutions.Stock 0.1 mol L-1 solutions of caffeic
acid or catechol, from Aldrich (Sigma-Aldrich Corp., St. Louis, MO),
were prepared daily by dissolving the appropriate amount in methanol
or water and were kept at 4°C. More diluted standards were prepared
by suitable dilution with the 0.1 mol L-1 citrate buffer solution (pH
5.0), which was also used as supporting electrolyte. Solutions of laccase
[EC 1.10.3.2. fromTrametesVersicolor, Fluka (Riedel-de Haën, Sigma-
Aldrich, Buchs, SG, Switzerland), 23.75 units mg-1] were prepared in
phosphate buffer solution of pH 6.5.

A 4 mM dithiobis(N-succinimidylpropionate) (DTSP) (Fluka) solu-
tion, prepared in dimethyl sulfoxide (DMSO) (Panreac) and stored at
4 °C, was used in the formation of the monolayer. A 25% glutaralde-
hyde solution (Aldrich) was also used for laccase immobilization atop
the modified electrode by cross-linking. All chemicals used were of
analytical reagent grade, and water was obtained from a Millipore
Milli-Q (Bedford, MA) purification system.

Instrumentation and Preparation of Laccase-NTSP-Modified
Gold Electrode. A Metrohm (Metrohm SA, Herisau, Swizerland)
6.1204.020 gold disc electrode (AuE) (Ø 3.0 mm) was used as the
electrode substrate for further modification. A BAS MF-2063 Ag/
AgCl/3 M KCl reference electrode and a Pt wire counterelectrode were
also employed. A 10 mL glass electrochemical cell was used.

Preparation of Laccase-NTSP-Modified Gold Electrode.The pre-
treatment of the gold surface before SAMs deposition is described
elsewhere (27). Briefly, the gold disc electrode was polished with 3.0
µm diamond powder (BAS MF-2059) for 1 min and immersed for 1 h
in a hot 2 M KOH solution. Next, the electrode was rinsed with water,
immersed in concentrated H2SO4 for 10 min, rinsed with water,
immersed in concentrated HNO3 for 10 min, and rinsed again with
deionized water. Finally, the electrode was dried with argon and used
immediately for the monolayer preparation.

The clean AuE was immersed in a 4 mmol L-1 DTSP solution in
DMSO for 1 h atroom temperature (28). Afterward, the electrode was
thoroughly rinsed with water and finally with 0.1 mol L-1 citrate buffer
(pH 5.0).

Laccase was immobilized atop the modified SAM-AuE electrode
by cross-linking with glutaraldehyde by deposition of 5µL of a 1123.5
units mL-1 laccase solution on the DTSP-modified AuE and subsequent
immersion, once the electrode was dried out at ambient temperature,
in a 25% glutaraldehyde solution for 1 h at 4°C (29).

Amperometric measurement of phenolic compounds was carried out
with an ECO Chemie Autolab PSTAT 10 potentiostat (Eco Chemie
B.V., Utrecht, The Netherlands) using the software package GPES 4.7
(General Purpose Electrochemical System). A P-Selecta Agimatic
magnetic stirrer was also used.

Amperometric sensing of phenolic compounds with the biosensor
was carried out by adding different concentrations (1.0× 10-7-1 ×
10-5 mol L-1) of caffeic acid or (1.0× 10-7-1 × 10-5 mol L-1) of
catechol at 2 min intervals. Several data files were generated by injecting
a measured amount of caffeic acid to a stirred solution in which the
enzyme was immobilized onN-succinimidyl-3-thipropionate (NTSP)-
modified gold electrode. Then, the electrical current generated by the
concentration changes was recorded with the application of a potential
of +0.00 V (29). The collected amperometric data were preprocessed
for the ANN learning and prediction process to demonstrate the ability
of ANN in model prediction of the concentration of caffeic acid or
catechol of the biosensor.

Samples.OMW samples came from three different olive oil mills
in Spain (Almendralejo, Badajoz; Martos, Jaén; and Villarejo de
Salvanés, Madrid) and corresponded to the 2004-2005 harvest season.
Olive oil was extracted using a centrifugation system in all cases.

Estimation of the Total Phenolic Compounds Content in OMW.An
appropriate aliquot of homogenized sample was diluted with 10 mL of
citrate buffer and transferred to the electrochemical cell. Then, while
recording the current and allowing the steady state to be reached
amperometric measurements were carried out in stirred solutions at
0.00 V using the laccase biosensor. For the biosensor, the content of
phenolic compounds was estimated by applying the standard additions
method, which implied the addition of five successive 20µL aliquots
from a 1.0× 10-3 mol L-1 caffeic acid or catechol acid stock solution.
For the ANN determination, the amperometric data corresponding to
the addition of the sample was used to demonstrate the ability of ANN
in model prediction of the concentration of phenolic compounds on
the biosensor.

ANN. The type of ANN used in this work is a Perceptron model
also known as backpropagation Perceptron and is probably the most
commonly used today. The ANN selected is a feed-forward network
with a prediction horizon and supervised learning. It is characterized
by layered architectures, and feed-forward connections between neurons,
or back connections, are possible. Weights are assigned to these
connections between the neurons of one layer and the next. To predict
with the least possible error, these values were optimized. This type of
network has been selected because it is a good pattern classifier, signal
filter, and data compressor (30). Specifically, the backpropagation
Perceptron multilayer is used to model systems based on nonlinear
dynamics (22,24, 25, 31). On the other hand, another important
advantage is that knowledge of the system to be modeled is not
necessary; therefore, the ANN has enormous applicability. The ANN
used was designed by Matlab version 7.01.24704 (R14). The statistical
analyses were carried out by Statgraphics Plus (version 5.1). The ANN
consists of two layers with connections to the outside world (an input
layer by which data are presented to the network and an output layer
that holds the network response to given inputs) and one hidden layer
(optimized afterward). The variables input into the ANN must be
characteristic of the system. The output layer consists of two neurons
for the output variables; that is, the ANN predicts the caffeic acid and
catechol concentrations. This topology with a single hidden layer has
been considered sufficient to solve similar or more complex problems
(22, 24, 25). Moreover, more hidden layers may cause overfitting (32).

The transfer function (TF) used in ANN, the number of hidden
neurons, and other parameters of the ANN are optimized below. The
learning and verification samples and processes are described below
and, then, an optimization process is exposed.

Learning and Verification Sample.The learning sample was used
to optimize the weights, that is, select the adequate matrix of weights
to predict, with the least possible error, the real value by the input
values. On the other hand, the verification sample was used in the
verification process. At this stage, the ANN uses the input values to
estimate the output values, and no optimization process of weights was
carried out. These samples were composed of data that characterized
the process. They have as many rows as variables necessary to model
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the process and the same number of columns as the number of vectors
to describe the system to measure. The independent variables that
characterize the process to be modeled are laccase units, pH value,
and applied potential and current signal. Given that the ANN was
applied to three specific OMWs (Almendralejo, Badajoz; Martos, Jae´n;
and Villarejo de Salvanés, Madrid) for which the laccase units, pH
value, and potential value were fixed to 6, 5, and 0 V, respectively,
the learning sample is composed of three rows, that is, current signal
(µA) and caffeic acid and catechol concentration values (µM), and its
number of columns was 300. Every sample had the same format and
was normalized in the range from 0 to 1 or from-1 to 1 depending
on the TF used (sigmoid or hyperbolical tangent and lineal pendant
functions, respectively). The difference between samples is the percent-
age of data used in each one; that is, the learning and verification sample
have 80 and 20% of the total data, respectively. Taking into account
that every datum (current signal and caffeic acid and catechol
concentration values) of the verification sample should be interpolated
within learning range, the data were randomly distributed in both
samples.

Learning and Verification Processes of ANN.The development of
ANN involves two basic steps, learning and verification processes.

(a) Learning Process.The learning sample set was presented to the
network, and a backpropagation algorithm automatically adjusted the
weights; therefore, the output response to input vector was as close as
possible to the desired response (33) (Figure 1a). Each time an
estimation was made, the result was compared to the corresponding
desired value. Then, the estimation error (the difference between the
estimated and real values, also called the prediction error) was
backdistributed across the network in a manner that allowed the
interconnection weights to be modified according to the scheme
specified by the learning rule (Figure 1b). To optimize the ANN,
several training functions were tested. They are summarized inTable
1. These are classified as a function of the algorithm type used to update
the matrix of weights of the ANN. When the weights were modified,
the next data set was fed to the network, and a new estimation was
made. The estimation error was calculated again and backdistributed
across the network for the next modification. Simultaneously, using
the verification sample, a verification test was carried out to determine
the level of generalization produced by the learning set and to monitor
ANN overfitting (34). When every datum of the learning sample was
used, an epoch was finished and other one began. To avoid the
overfitting of the neural network model, the learning process was
repeated while the verification error decreased (35).

Among other parameters of the ANN, the number of neurons in the
hidden layer is related to the converging performance of the output
error function during the learning process of the network; the learning
coefficient (Lc) controls the degree at which connection weights are
modified during the learning phase.

(b) Verification Process.The objective of this step was to evaluate
the competence of the trained network. For each training function, the
matrix of weight optimized above was used. The verification sample
was input into the ANN, and predicted values were calculated (Figure
1a). In the verification process, these were compared with the real ones
to optimize the parameters of the ANN by statistical tools and to test
the ANN. In this process, no corrections of these weights were made
and the ANN was used only to predict.

Optimization Process of the ANN.To optimize the ANN, two stages
were carried out. First, the adequate training function was selected,
and then the main parameters of the ANN (using the selected training
function) were optimized. Finally, these two stages were repeated to
select the adequate TF (sigmoid, hyperbolical tangent, or linear transfer
function).

(a) Selection of the Training Function.Using the adequate learning
and verification samples, the training function was selected from among
14 different functions (Table 1). To investigate the effect of each
training function, all other ANN parameters were set; that is, the
topology was five hidden neurons, and the others were set as shown in
the literature (36). With these conditions and for each training function,
a learning process (using 100 epochs) and, then, a verification process
were developed. This process was repeated for every training function
and, then, all predicted values for each training function were compared
one by one with the real values. These comparisons were carried out
by prediction error, statistical tests, and correlation coefficients (real
vs predicted values) (R2 values). The statistical analysis was carried
out to determine if there were significant differences between real data
and those predicted by the ANN (at a 95% confidence level). The null
hypothesis assumes that statistical parameters of both series are equal.
Otherwise, an alternative hypothesis is defined. Thep value was used
to check each hypothesis. Its threshold value was 0.05. If thep value
is greater than this, the null hypothesis is fulfilled. Different parametric
and nonparametric methods were applied on the basis of measure of
either central tendency (Kolmogorow-Smirnov test, Mann-Whitney-
Wilcoxon test, and Kruscal-Wallis test), variance (Kruscal-Wallis test,
Cochran C test, Barllet’s test, and Levene test), or inferential parametric
test for significance (Ftest andt test). In every case, thep values of

Figure 1. Schematic diagram of calculation in a backpropagation
Perceptron: (a) prediction stage and first part of optimization process of
the weights; (b) second part of weight optimization.

Table 1. Summary of All Tested Training Functions (36)

training
function description

Gradient Descent with Variable Learning Rate
TRAINGD gradient descendent backpropagation (BP)
TRAINGDM gradient descendent with momentum BP
TRAINGDX gradient descendent with momentum and adaptive

linear BP
TRAINGDA gradient descendent with adaptive learning learning

rate BP

Conjugated Gradient Descent
TRAINCGF Fletcher Powell conjugate gradient BP
TRAINCGP Polak−Ribiere conjugate gradient BP
TRAINCGB Powell−Beale conjugate gradient BP
TRAINSCG scaled conjugate gradient BP

Quasi-Newton Algorithm
TRAINBFG BFGS quasi-Newton BP
TRAINOSS one-step secant BP

Resilient Backpropagation
TRAINR random order incremental update
TRAINRP resilient PB (Rprop)

Levenberg−Marquardt
TRAINLM Levenberg−Marquard BP

Automated Regularization
TRAINBR Bayesian regularization
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statistical tests developed were>0.05. Therefore, the meanp value
can be calculated as a representative value.

Given that the ANN should predict with the highest possible
accuracy, the training function selection was carried out to obtain the
least prediction error and the highest values ofp value andR2 (real vs
predicted values).

Optimization of ANN Parameters.Using the ANN with the training
function selected above, the parameters of the ANN were optimized
by experimental design. The experimental design was a central
composite design 24 + star. Taking the selected training function into
account, the variables analyzed were the hidden neurons number
(topology), Lc, Lcd, and Lci, and the responses were taken in the
learning and verification processes: in the learning process, the epoch
number necessary to optimize the matrix of weights was taken, and in
the verification process, theR2 (real vs predicted values) one for each

output neurons (caffeic acid and catechol compounds) and mean
prediction error (MPE) were calculated.

The hidden neurons were tested between 5 and 15 neurons, because
when the number of hidden neurons is smaller than 5 the ANN
is not able to adapt to the process to be modeled, and when it is higher
than 15 the number of parameters to optimize in each epoch is
over 45. The Lci was tested between 2 and 100; Lc and Lcd
were tested between 0.001 and 1 (37). A learning process was carried
out in each run of the experimental design. Then, the verification process
was carried out using the matrix of weights optimized in its learning
process. Finally, the responses of experimental design were taken. The
design was analyzed by taking into account that requirement that the
ANN should predict with the least prediction error and bothR2

values must be as close to unity as possible in the lowest iteration
number.

Figure 2. Training function selection process: (a, c, e) mean p value (- - -, caffeic acid; s, catechol); (b, d, f) R 2 ([, caffeic acid; 9, catechol) and
MPE (2, caffeic acid; ×, catechol).
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Testing of the Optimized ANN.The verification sample was input
into the optimized ANN, and then its prediction and real values were
checked. The evaluation of the ANN consisted of calculating of
prediction error, bothR2 values (real vs predicted values) andp values
of statistical tests. As has been shown under Selection of Training
Function, the statistical analysis was carried out by calculating and
comparing thep value with the threshold (0.05) in parametric and
nonparametric statistical tests (Kolmogorow-Smirnov, Mann-Whit-
ney-Wilcoxon, Kruscal-Wallis, Kruscal-Wallis, Cochran C, Barllet’s,
Levene,F test, andt test).

RESULTS AND DISCUSSION

Training and Transfer Function Selection. The learning
and verification processes were carried out using a sigmoid,
hyperbolical tangent and linear TFs. In the verification process,
the selection of adequate TF was carried out by comparing the
prediction error of two ANNs by statistical tools. The ANN
using the sigmoid function (ANNS), hyperbolical function
(ANNH), and linear transfer (ANNL) as TF are described below.

Sigmoid Transfer Function.To optimize the ANNS, the
current signal was input into the ANNS, and the output was
composed of caffeic acid and catechol concentrations. The
calculation process followed to optimize the ANNS is described
under Optimization Process of the ANN.

From ap value point of view, focusing attention on the caffeic
acid concentration prediction, the two best training functions
were TRAINLM and TRAINBR. With the catechol concentra-
tion estimation as the focus, the best training functions were
TRAINLM, TRAINBR and TRAINRP (Figure 2a). FromR2

and MPE points of view, the best results were taken using an
ANNS with TRAINBR (Figure 2b). Given that the ANN should
predict both variables as well as possible, the TRAINBR was
selected as training function.

The influences of every factor over the response of the
experimental design were analyzed (Figure 3). The topology
is the factor with the most influence overR2

caffeic acid (real vs
predicted values). The Lc has a notable influence over MPE

Figure 3. Analysis of influences of factor on the responses: (a−d) predictions carried out by ANNS; (f−i) estimations carried out by ANNH.
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and bothR2 values. The Lcd is the factor with most influence
over all responses of experimental design. Finally, Lci has
influence over theR2

caffeic acid. Given that the factors with more
influence are Lc and Lcd, if a global method of improving the
ANNS prediction were necessary, it would consist of carrying
out a fine-tuning of Lc and Lcd. This tuning could be made
easy if the their response surface was known. Therefore, the
influence of Lc and Lcd on every response of experimental
design is shown inFigure 4. As can be seen, from MPE and
bothR2 values points of view, the best results are reached when
Lcd and Lc areg0.5. Nevertheless, the optimized parameter
values are calculated in a different way.

The parameters of the ANN with TRAINBR training function
were optimized by an experimental design. Taking into account
the considerations described above, the optimized parameters
are 10 hidden neurons, Lc and Lcd) 0.5005 and Lci) 149
were the optimal values of the ANNS. In the verification
process, the meanR2 of both estimations (caffeic acid and
catechol concentrations) was>0.999 and the MPE was 5.1×
10-4 (Table 2). Therefore, the ANNS is able to predict the
caffeic acid and catechol concentrations.

Another method to calculate the optimal parameters values
was used. The experimental design responses were fitted to four
regression equations (eq 1). Then, the optimal parameters of
the ANN were calculated by solving this system of equations

where every variable is specified in its original unit. The required
response values were interpolated inside the range of experi-
mental design run results and agreed with the assumed
considerations (Table 3) (for example, the selected MPE was
1.5× 10-4 because the least prediction error value is required).

The solution of the system of equations was learning sample
of seven hidden neurons, Lc, Lcd, and Lci equal to 1, 0.879,
and 117, respectively. Finally, these values were tested in the
ANNS, and the results are shown inTable 2. Given that in the
prediction process there are two-factor interactions, the MPE
value (3.1× 10-3) is higher than the required value (5.1×
10-4).

Hyperbolical Tangent Transfer Function.The calculation
process was explained under Optimization Process of ANN.
Following this method, the mean ofp values were calculated.
The meanp values, theR2 values, and MPE versus training
function are shown inFigure 2. The p values of real and
predicted values calculated by TRAINBFG and TRAINBR
training functions were the closest to unity (Figure 2a). From
MPE andR2 points of view, the estimations calculated using
TRAINBR are the best. Therefore, it was selected.

The influences of every independent variable on the responses
of the experimental design were studied (Figure 3). The
topology has influence on MPE and caffeic acid coefficient
correlation (real vs predicted values). The Lc has a slight
influence on bothR2 values. The Lcd is the factor with most
influence over every independent variable. Finally, Lci has
influence over the MPE andR2

catechol. Given that the factors
having the most influence are topology and Lcd, a fine-tuning
of these factors could improve the ANNH estimations, if it
would be necessary. The fine adjustment of these could be made
easy if the response surface was known. Therefore, the influence
of these on every response of experimental design is shown in
Figure 4. As can be seen, the topology and Lcd could be
calculated by local extremes of the response surfaces. However,
the optimized values of the independent variables were calcu-
lated in a different way.

The experimental design was carried out in the same way
and by taking into account the same considerations as in the
subsection above. The optimal values and the main results are
shown inTable 2.

To calculate the optimal parameters of the ANNH, the system
of equations (eq 2) formed by the fit of the responses of
experimental design was solved

Table 2. Parameters of the ANN, Final Prediction Error Depending on
the Transfer Function Used (with a 95% Confidence Level)

ANNS ANNH ANNL

Optimized Parameters of the ANN
training function TRAINBR
hidden neurons number 10 20 10
learning coefficient 0.5005 0.5005 0.5005
learning coefficient decrease 0.5005 0.5005 0.5005
learning coefficient increase 149 51 149

Final Prediction Error
MPE 5.1 × 10-4 6.5 × 10-3 2.6 × 10-1

sum of prediction error 3.3 × 10-2 4.5 × 10-1 1.7 × 101

mean R 2 >0.999 >0.999 0.765

Calculated Parameters of the ANN
hidden neurons number 7
learning coefficient 1
learning coefficient decrease 0.879
learning coefficient increase 117

Final Prediction Error
MPE 3.1 × 10-3

sum of prediction error 2 × 10-2

mean R 2 >0.999

(-1507.28 54909.30 198765.00 -44.95

1.5× 10-4 -9.4× 10-2 1.5× 10-2 1.7× 10-4

7.0× 10-3 4.6× 10-1 -7.5× 10-2 -4.1× 10-4

-4.6× 10-3 5.5× 10-2 7.8× 10-3 -4.7× 10-4
)

(topology
Lc
Lcd
Lci

) + (76342.8

8.2× 10-2

7.0× 10-3

1.0162
) ) (iteration

MPE
R2

catechol

R2
caffeic acid

) (1)

Table 3. Response Ranges of Experimental Design Runs and Their
Required Values

max value min value mean value required value

Sigmoid Transfer Function
iteration 300000 149000 187626 149000
MPE 2.2 × 10-1 5.1 × 10-4 4.8 × 10-2 5.1 × 10-4

R 2
caffeic acid >0.999 0.716 0.976 1

R 2
catechol >0.999 0.172 0.778 1

Tangent Hyperbolical Transfer function
iteration 300000 4125 117406 4125
MPE 6.5 × 10-3 8.3 × 10-3 7.11 × 10-3 8.3 × 10-3

R 2
caffeic acid >0.999 >0.999 >0.999 1

R 2
catechol 0.999 0.998 0.998 1

(-1967.95 -23024.30 295230.00 -211.172

9.5× 10-5 -1.4× 10-4 2.7× 10-4 -6.7× 10-7

2.5× 10-6 2.0× 10-5 -3.4× 10-5 -1.8× 10-7

-2.1× 10-6 1.7× 10-6 4.2× 10-6 -3.4× 10-9
)

(topology
Lc
Lcd
Lci

) + (14633.8

8.1× 10-3

9.9× 10-1

9.9× 10-1
) ) (iteration

MPE
R2

catechol

R2
caffeic acid

) (2)
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where every variable is specified in its original unit. The re-
quired response values were taken using the same method
described under Sigmoid Transfer Function. Given that the
two-factor interaction effects are not negligible, the solution
of equations system is outside the studied range. Therefore,
the optimal parameter values were not calculated by this
method.

Linear Transfer Function.The calculation process followed
to optimize the ANNL is the same as the two other ANNs
described above. The best estimation of caffeic acid and cat-
echol concentrations was reached using any tested training
function except TRAINGD and TRAINGDM. Given that
TRAINBR was selected in both studied ANNs, this training
function was also selected in ANNL (Figure 2). Using the
same experimental design method and taking into account
the same considerations described above, the optimized param-
eters were calculated and the main results are shown in
Table 2.

Given that the relationship between real current signal and
real concentration data is a nonlinear dependence, the ANNL,
based on lineal relation, is not adequate. Because of this, the
MPE values are the highest and theR2 is the lowest. Therefore,
the influence analysis was not carried out.

Transfer Function Selection.Given that the optimized ANN
was used to predict caffeic acid and catechol concentrations,
the lowest MPE and highestR2 were the criteria to select the
adequate ANN (ANNH or ANNS). As can be seen inTable 2,
the meanR2 values were similar in both cases, but the mean
and the sum prediction error values (sum of prediction error
values in the verification process for every data set) calculated
by ANNS were less than the other. Therefore, the ANN selected
to predict the caffeic acid and cathecol concentrations was the
ANNS.

Application of ANNS to a Real Case.Finally, to validate
the prediction capability of the optimized ANNS, other verifica-
tion data were made (38), formed by current signal and caffeic

Figure 4. Response surfaces of experimental design variables: (a−d) predictions carried out by ANNS; (f−i) estimations carried out by ANNH.
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acid and catechol concentration values. These were taken
from three different olive oil mills in Spain (Almendralejo,
Badajoz; Martos, Jaén; and Villarejo de Salvanés, Madrid)
by field measurement. As can be seen inFigure 5, both R2

values (real vs predicted values) are>0.999 and the MPE is
<0.5%.

Both series of predicted and real values (caffeic acid and
catechol compounds) were compared by statistical analysis, and
the meanp value was>0.87. Given that it was>0.05, there is
not a statistically significant difference between the two
distributions (real and predicted values) with a 95% confidence
level.

To sum up, the optimized ANNS is able to calculate the
caffeic acid and catechol concentrations when the ANNS is used
within the range studied.

Conclusion.An artificial neural network has been optimized
and validated. The data samples used to carry out the learning
and verification processes were taken from three mills in
Spain (Almendralejo, Badajoz; Martos, Jaén; and Villarejo de
Salvanes, Madrid) by field measurement. The training and
transfer functions of the ANN were optimized. The ANN used
was implemented with a sigmoid transfer function and a
TRAINBR training function (Lc and Lcd) 0.5005 and Lci)

149). The ANNS topology had an input node (current signal),
10 hidden and 2 output neurons (caffeic acid and catechol
concentrations). The mean difference between the real and the
predicted values of caffeic acid and catechol concentrations was
<0.5%. Given that the meanp value is >0.87, there is no
statistical difference between these real and predicted concentra-
tions.

The ANN/laccase biosensor can be adapted to quantify caffeic
acid and catechol concentrations and to deconvolute the
contribution of each one. Given that this prototype is able to
model the process to be measured with accuracy, it has the
advantage of being more selective and more accurate than
conventional methods.

To sum up, the ANN is an adequate tool to estimate the
concentration of a pollutant with a high environmental impact
in olive oil mill wastewater, without any previous phenomeno-
logical knowledge.
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